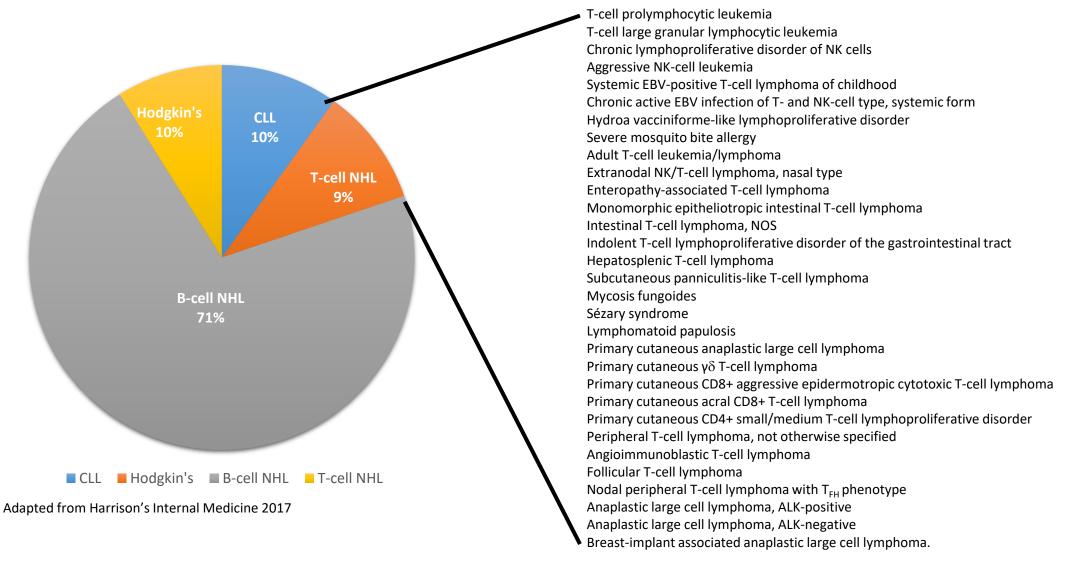
6th POSTGRADUATE LYMPHOMA CONFERENCE - Rome 2022

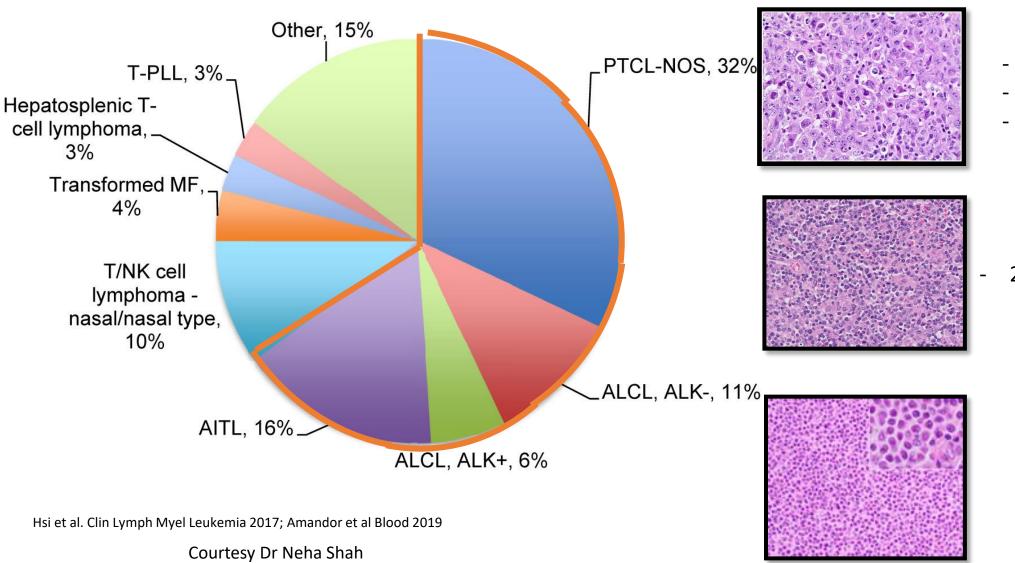
T cell Lymphoma Time for targeted therapy?

Ranjana Advani M.D.

Saul A Rosenberg Professor of Lymphoma


Disclosures

• Research Funding: Merck, Seattle Genetics, ADC therapeutics, Gilead, Merck, Cyteir, Regeneron, Daiichi


• SAB: Merck, BMS, Incyte, ADC therapeutics, Genentech/Roche, Epizyme, Incyte, BMS, Gilead, Beigene

DSMC: Genentech/Roche, Sanofi

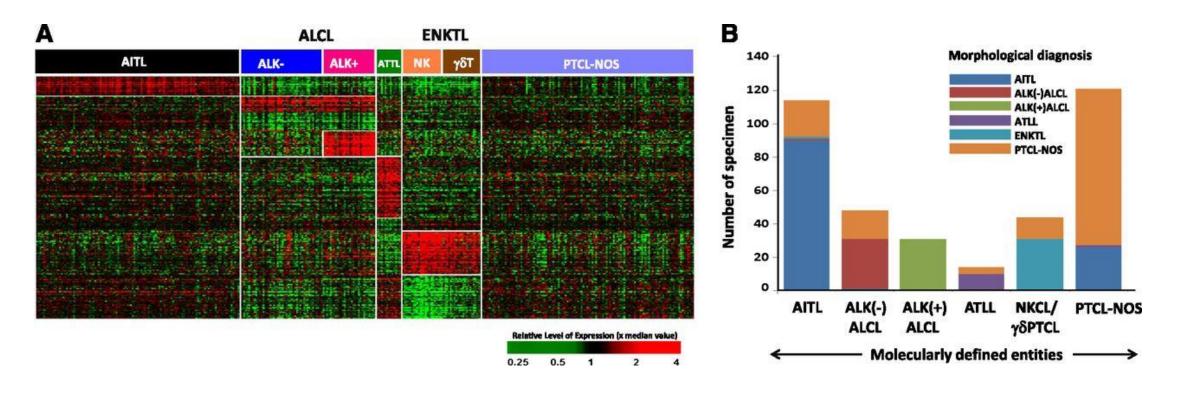
T-cell Lymphomas complex heterogeneous group of lymphomas

Different Histologies Immunophenotypically Different

ALCL

- CD30 positive
- ALK+ or ALK-
- Large anaplastic cells

AITL/Nodal PTCL with TFH features/Follicular T-cell lymphoma


- 2 of the following:
 - BCL6
 - CD10
 - PD1
 - CXCL13
 - ICOS

PTCL NOS

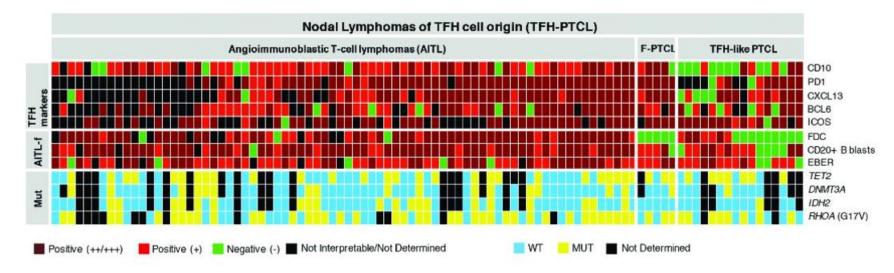
Grab bag term

Gene Expression Signatures Characterize Disease Biology

Gene expression profiles of 372 patients show subtypes have distinct profiles

Mutational Profile in Angioimmunoblastic TCL

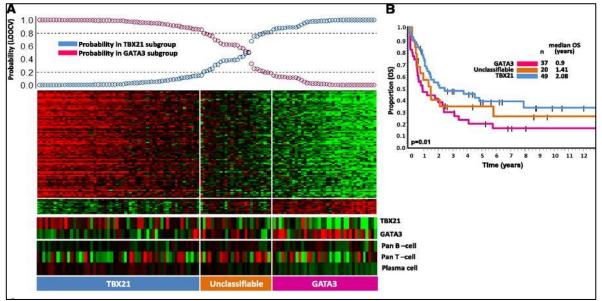
AITL contains recurrent mutations

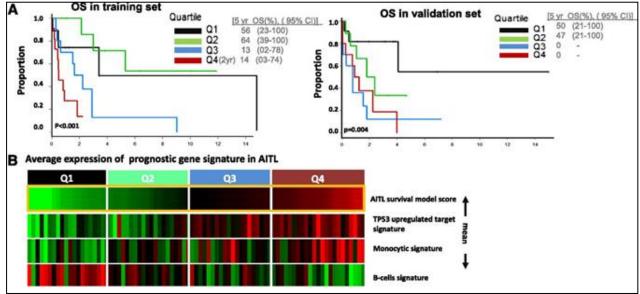

• TET2: ~55-75%

• RHOA: ~67%

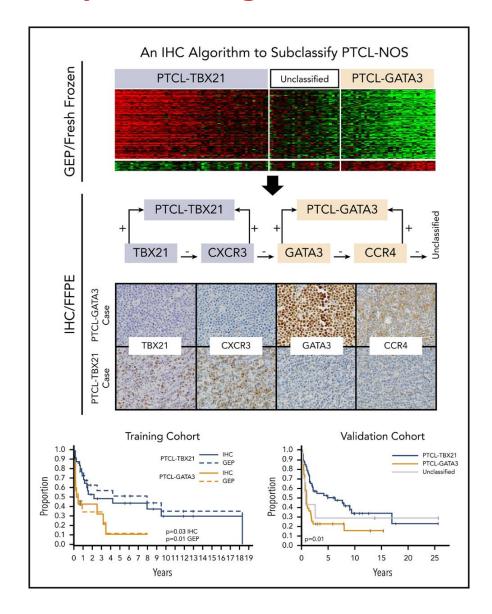
• IDH2: ~33%

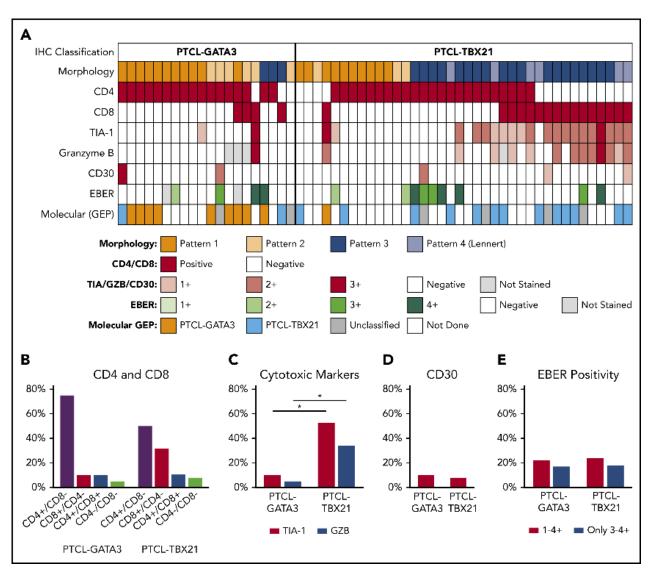
• DNMT~3A: 20%

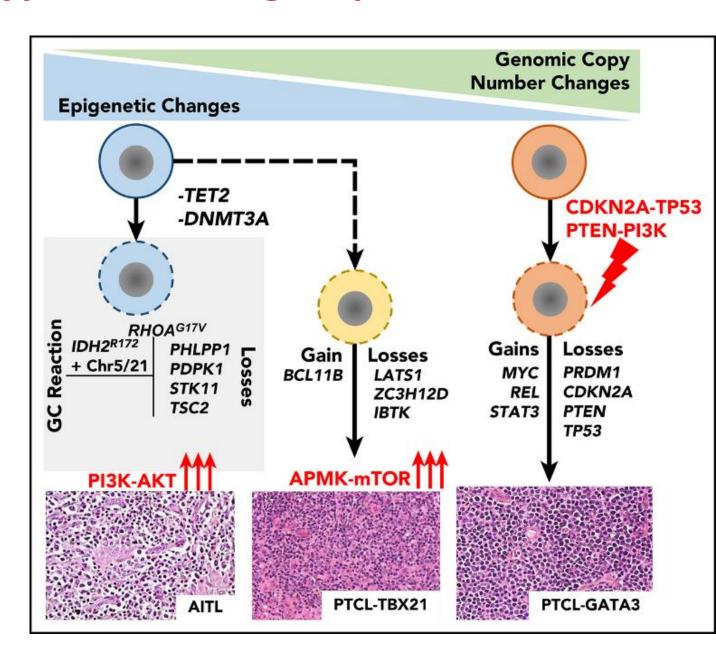

PTCL-NOS with TFH phenotype has similar immunohistochemical and genetic profiles



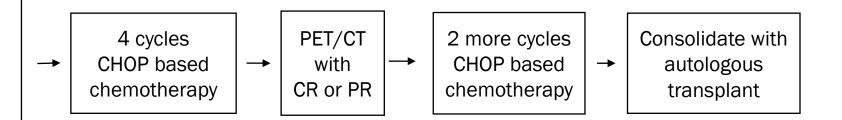
Gene Expression Signatures Can Risk Stratify Patients with PTCL and AITL

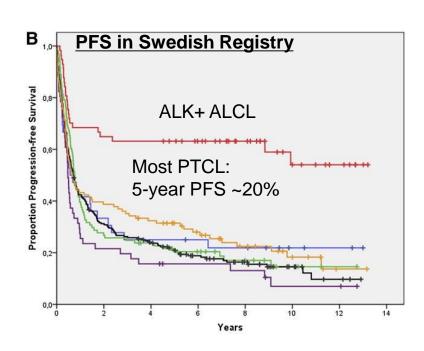

- GATA3 and TBX21 delineate distinct subgroups of PTCL-NOS
- A 34 gene expression signature can risk stratify AITL


PTCL-NOS AITL


Reproducing the molecular subclassification of PTCL-NOS by IHC

Genetic Drivers in Subtypes and Subgroups of PTCL

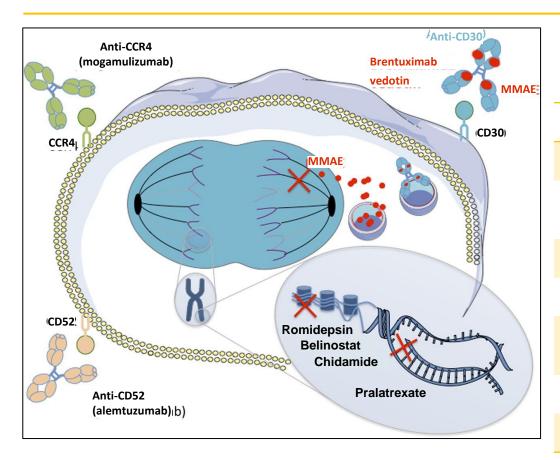

- Chr5 and chr21 gains co-occurred with IDH2^{R172} mutation in AITL,
- *IDH2* wild-type cases had deletions targeting PI3K–AKT–mTOR.
- PTCL-NOS molecular subgroups (PTCL-GATA3 and PTCL-TBX21) had distinct genetic aberrations
- CDKN2A loss showed prognostic significance



PTCL: Outcomes with CHOP/CHOEP therapy

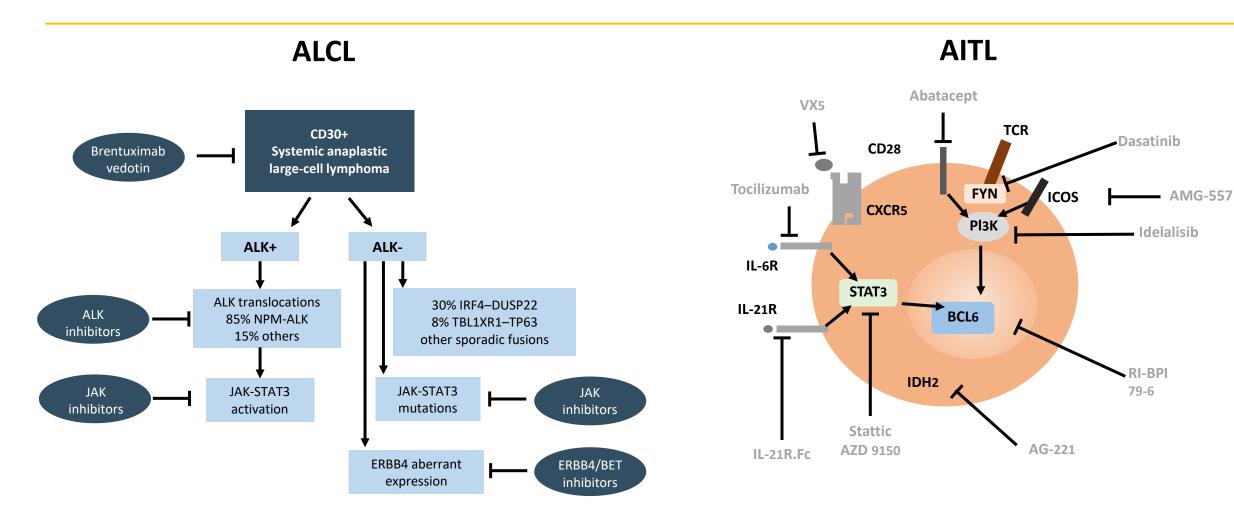
Untreated PTCL

- PTCL, not otherwise specified
- Angioimmunoblastic T-cell lymphoma
- Anaplastic large cell Lymphoma, ALK-



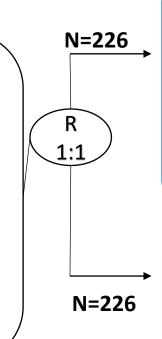
Outcomes By Intent to Consolidated with Auto-HSCT in Swedish Registry				
Auto-SCT No Auto-SCT (n = 124)				
5 yr OS 48%		26%		
5 yr PFS	41%	20%		

Front Line therapy of PTCL


Time for targeted therapy?

Adding novel agents to frontline setting Approved drugs in relapsed/refractory PTCL

Drugs	Class	Indications
Pralatrexate	Antifolate	US FDA: PTCL (2009)
Romidepsin	HDAC inhibitor	US FDA: CTCL (2009) and PTCL (2011)
Brentuximab vedotin	Anti-CD30 ADC	US FDA: ALCL (2011)
Belinostat	HDAC inhibitor	US FDA: PTCL (2014)
Mogamulizumab	Anti-CCR4 mAb	Japan: ATLL (2012), PTCL and CTCL (both 2014)
Chidamide	HDAC inhibitor	China: PTCL (2014)
Forodesine	PNP inhibitor	Japan: PTCL (2017)


Potential targeted therapies

ECHELON-2: BV-CHP vs CHOP

• CD30-expression (≥10% cells)

- Previously-untreated PTCL:
 - Systemic ALCL (sALCL)*
 including ALK(+) sALCL with
 IPI ≥2, ALK(-) sALCL
 - PTCL-NOS, AITL, ATLL, EATL, HSTCL

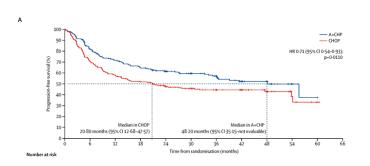
BV+CHP

brentuximab vedotin 1.8 mg/kg

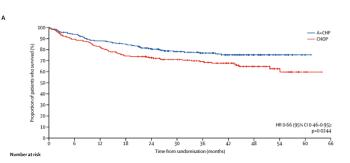
- + (C) cyclophosphamide 750 mg/m²
- + (H) doxorubicin 50 mg/m²
- + (P) prednisone 100 mg (Days 1-5) + placebo

Q3W for 6 to 8 cycles

CHOP + placebo

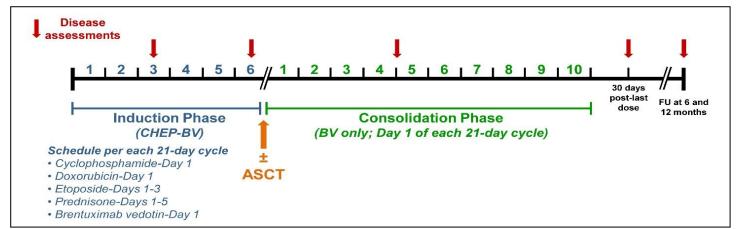

Q3W for 6 to 8 cycles

70% patients had ALCL

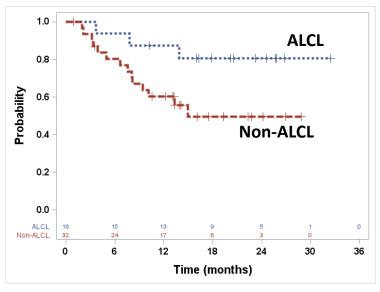

ECHELON-2: BV-CHP vs CHOP

- BV-CHP improves PFS (HR 0.71)
 - 3 year PFS: BV-CHP: 57% vs. CHOP: 44%
 - 34% reduction in risk of death
- Difference was most pronounced in ALCL
 - Less pronounced with AITL (HR 0.87) or PTCL (HR 0.83)
- BV approved in combination with chemotherapy for frontline use in CD30+ PTCL

Progression Free Survival


Overall Survival

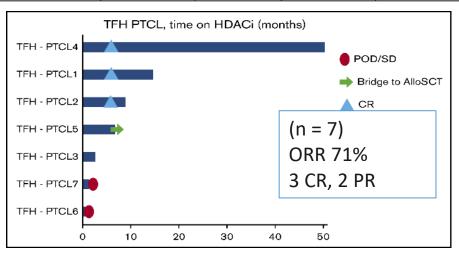
5-Year OS by Histology


	BV-CHP	СНОР
ALCL (n=316)	75.8%	68.7%
AITL (n=54)	62.5%	67.8%
PTCL-NOS (n=72)	46.2%	35.9%

Frontline Therapy with BV-CHEP + BV Maintenance (n=46)

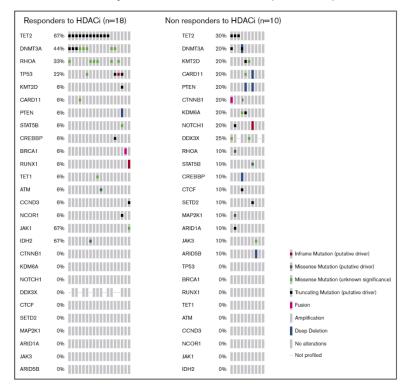
Response assessment by investigators: 2014 Lugano classification

Response	ALCL (n=16)	Non-ALCL (n=30)	AITL (n=17)	PTCL NOS (n=11)	PTCL TFH (n=2)
ORR	15 (94%)	27 (90%)	16 (94%)	9 (82%)	2 (100%)
CR	15 (94%)	22 (73%)	14 (82%)	6 (55%)	2 (100%)
PR	0	5	2	3	0
SD	0	0	0	0	0
PD	1	3	1	2	0

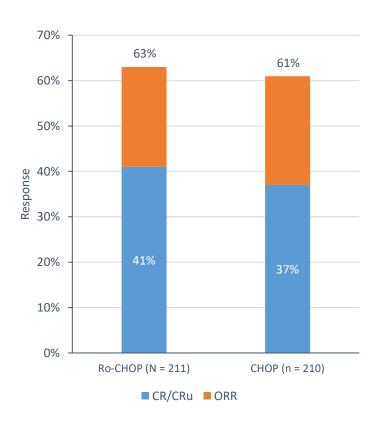


18mo PFS

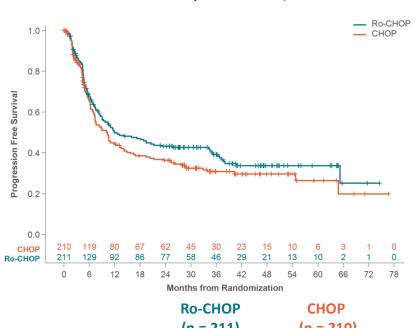
- ALCL 81%
- non-ALCL 49%
- ALCL (n=16): ASCT 7 vs no 9
- Non-ALCL (n=32): ASCT 17 vs no 15


TFH Phenotype Predicts Response to HDAC Inhibitors in Relapsed/Refractory PTCL

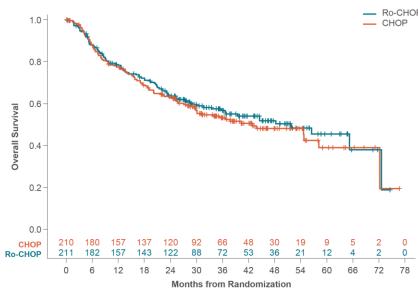
Response	TFH (n = 76)		Non-TFH (n = 5		
	ORR, n/total	CR, n/total (%)	ORR, n/total (%)	CR, n/total	P*
Overall (n = 127)	43/76 (56.5)	22/76 (28.9)	15/51 (29.4)	10/51 (19.6)	.0035
Single agent (n = 97)	32/59 (54.2)	15/59 (25.4)	12/38 (31.5)	8/38 (21.0)	.0371
Combinations (n = 30)	11/18 (61.1)	7/18 (38.8)	3/12 (25.0)	2/12 (16.6)	.0717


Typical AITL/TFH mutations in TET2, and/or DNMT3A, and/or RHOA present in

- Responders 15/18 (83%)
- Non-responders 4/10 (40% (P = .034)


Romidepsin Plus CHOP vs CHOP in Previously Untreated PTCL LYSA Randomized Phase III study

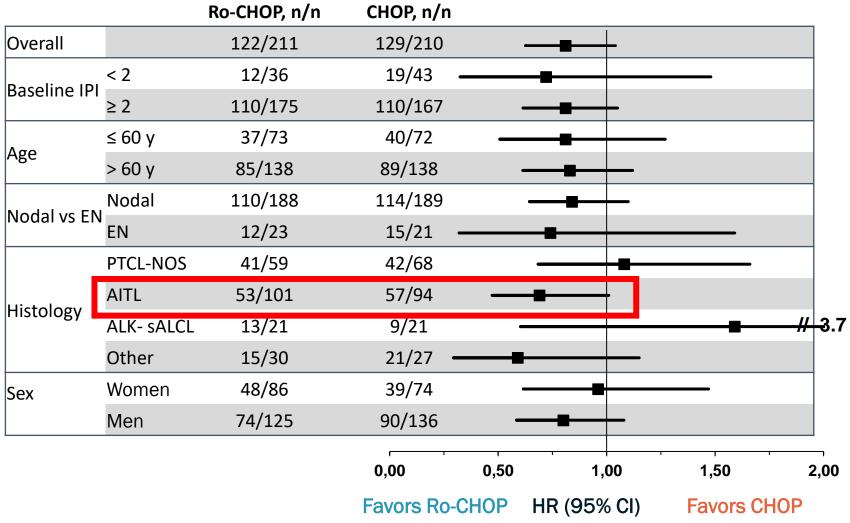
Ro-CHOP: Response at End of Treatment


Bachy E, et al. ASH 2020. Abstract 39.

Ro-CHOP: PFS by independent RAC (ITT Population)*

_	Ro-CHOP (n = 211)	CHOP (n = 210)	
PFS, median	12.0	10.2	
(95% CI), mo	(9.0-25.8)	(7.4-13.2)	
HR	0.81		
(95% CI)	(0.63-1.04)		
<i>P</i> value	0.096		

Ro-CHOP: OS (ITT Population)


	Ro-CHOP (n = 211)	CHOP (n = 210)	
OS, median (95% CI), mo	51.8 (35.7-72.6)	42.9 (29.9-NR)	
HR (95% CI)	0.9 (0.68-	-	
<i>P</i> value	0.477		18

Ro-CHOP Additional toxicity, Unselected patients

Subgroup Analysis of PFS (ITT Population)

Dose Reductions and Interruptions

≥ 1 TEAE Dose Modification, n (%)	Ro-CHOP (n = 210)	CHOP (n = 208)
Romi red	77 (37)	NA
Romi interrupt	132 (63)	NA
Romi DC	17 (8)	NA
CHOP red	54 (26)	31 (15)
CHOP interrupt	75 (36)	42 (20)
Completed All 6 Cycles w/o Red or Inter, n (%)	Ro-CHOP (n = 210)	CHOP (n = 208)
Romi	62 (30)	NA
СНОР	112 (53)	125 (60)

Phase 1b/2 Study of Chidamide + CHOP in PTCL

Table 1. Patient demographics and disease characteristics

Baseline characteristic, n (%)	30 (100)
Pathologic subtypes	
PTCL- NOS	12 (40)
AITL	8 (26.7)
ALK+ ALCL	4 (13.3)
ALK- ALCL	3 (10)
Other¹	3 (10)
Age, median (range)	52.5 (42, 58)
Male	19 (63.3)
ECOG PS > 0	12 (40)
Ann Arbor Stage III/IV	19 (63.3)
LDH elevated	8 (26.7)
B symptoms present	10 (33.3)
PIT risk group	
0-1	29 (96.7)
2-4	1 (3.3)

Table 2.Dose-limiting toxicities and patient allocation

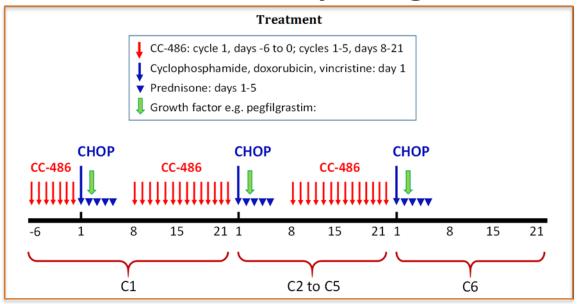

Group	Total (n=30)	Dose- escalation cohort (n=15)	Expansion cohort (n=15)	DLTs (n=2)
20mg	9	6	3	1 pt, Gr 3 febrile neutropenia
25mg	9	3	6	
30mg	9	3	6	
35mg	3	3	0	1 pt, Gr 3 vascular access complication

Table 3. Response evaluated at the end of combination treatment

	20mg (n=9)	25mg (n=9)	30mg (n=9)	35mg (n=3)	Total (n=30)
Overall response	8 (100)	7 (77.8)	7 (77.8)	1 (50)	23 (82.1)
CR or CRu	4 (50)	4 (44.4)	5 (55.6)	0	13 (46.4)
PR	4 (50)	3 (33.3)	2 (22.2)	1 (50)	10 (35.7)
SD	0	1 (11.1)	0	0	1 (3.6)
PD	0	1 (11.1)	2 (22.2)	1 (50)	4 (14.3)
NA	1*	0	0	1**	2

Epigenetic Targets Oral Azacitidine (CC-486) Plus CHOP as Initial Treatment for PTCL

Phase 2 Study Design

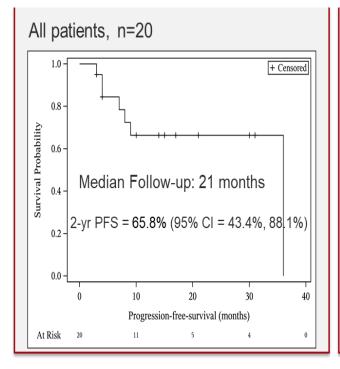
- CC486 at 300 mg daily from day -6 to day 0 for cycle 1 priming, and on days 8-21 following cycles 1-5.
- Patients in CR/PR following 6 cycles of treatment have the option to proceed to consolidative HSCT.

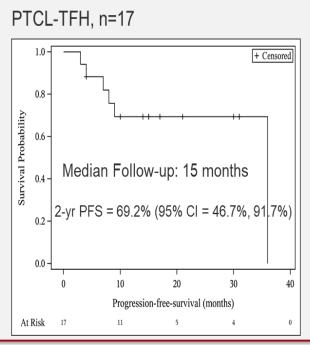
Patient and Disease Characteristics

Clinical Characteristics	Number	Percentage
Number of patients	21	100%
Median age in year (range)	66 (2	22-77)
Gender Male	13	62%
Female	8	38%
ECOG > 1	8	38%
Stage III-IV	19	90%
LDH Elevated	10	48%
Bone marrow involvement	7	33%
CD30 ≥ 5%	5	24%
PTCL subtypes		
PTCL-TFH	17	81%
PTCL-NOS	3	14%
ATLL	1	5%
IPI 0-2	12	57%
3-5	9	43%

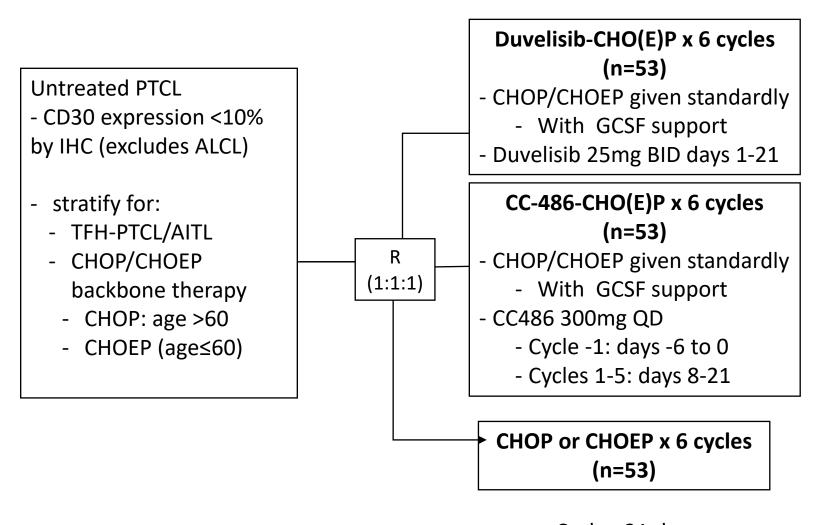
Ruan J, et al. ASH 2021. 21

Oral Azacitidine (CC486) Plus CHOP Efficacy and Safety


Objective Responses

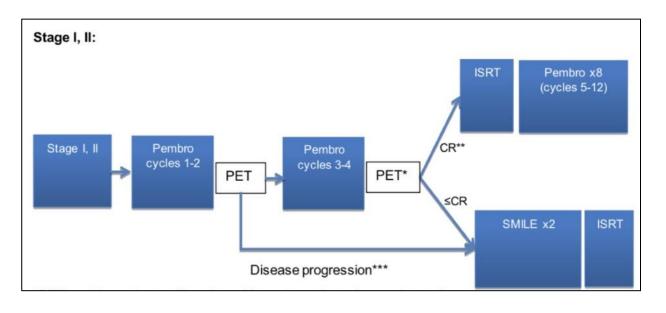

Response	Interim*		EOT*			
	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)
ORR	17	85%	94%	15	75%	88%
CR	11	55%	59%	15	75%	88%
PR	6	30%	35%	0	0	0
SD	2	10%	0	1	5%	0
PD	1	5%	6%	2	10%	6%
Discontinuation	0	0	0	2	10%	6%
Median follow-up		15 months (range 9-23)				

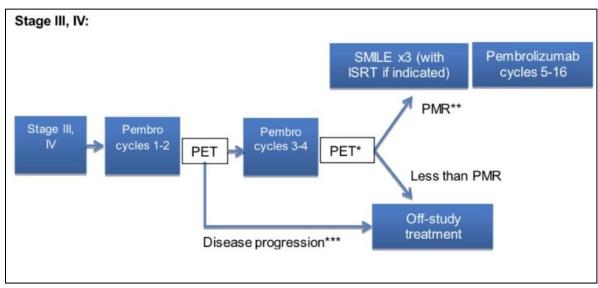
Grade 3-4 toxicities in > 10% :


 Neutropenia 	71% (N =15)
 Febrile Neutropenia 	14% (N = 3)
Anemia	14% (N = 3)
 Thrombocytopenia 	10% (N = 2)
 Fatigue 	14% (N = 3)
 Hyponatremia 	14% (N = 3)

Progression-Free Survival

A051902: A randomized phase II study of duvelisib or 5-azacitidine in addition to CHOP or CHOEP in comparison to CHOP/CHOEP


- Primary Objective:
 - To compare the PET CR rate of duvelisib or 5-azacitidine in combination with CHOP/CHOEP compared to CHOP/CHOE
- Primary Endpoint:
 - 25% difference PET CR rate
- Correlative Studies:
 - Monitoring MRD
 - Alizadeh
 - Gene Expression Profiling and Custom Capture Sequencing
 - Dave
 - Patient Reported Outcomes
 - Thanarajasingam
 - PET/CT Evaluation
 - Schoder and Wright


Checkpoint Inhibition in T-cell Lymphoma

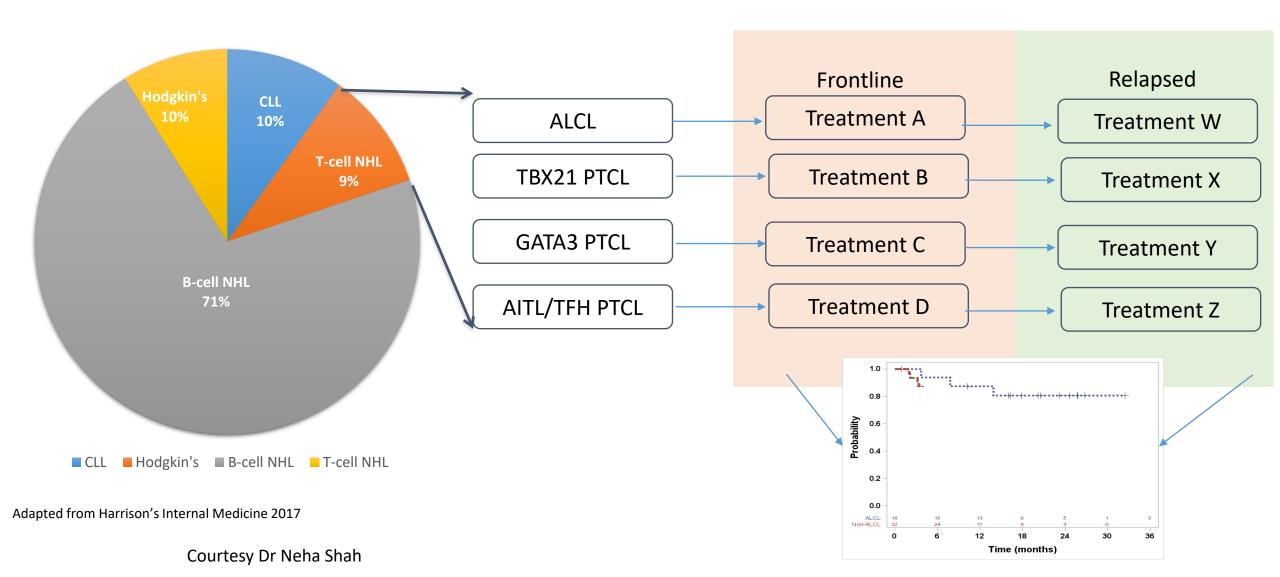
- PDL1 expression in TCL:
 - 15% of PTCL and 27% CTCL
 - Higher expression in cells of the microenvironment
- Multiple ongoing single agent and combination studies
- In extranodal NK/T-cell lymphoma, PD1 inhibition has been promising and durable
- In ATLL, 3 patients with rapid progression of disease with nivolumab

Histology	Agent	ORR
Cutaneous T-cell Lymphoma	Pembrolizumab	38% (N=24)
Cutaneous T-cell Lymphoma	Nivolumab	13% (N=15)
Peripheral T-cell Lymphoma	Nivolumab	40% (N=5)
Extranodal NK/T-cell Lymphoma	Pembrolizumab	100% (N=5)
Extranodal NK/T-cell Lymphoma	Pembrolizumab	57% (N=7)
Extranodal NK/T-cell Lymphoma	Sintilimab	60.7% (N=28)
Adult T-cell Leukemia/Lymphoma	Nivolumab	0%

NCT 03728972: Pembro in ENKL

Abbreviations: ISRT (involved site radiation therapy), SMILE (steroids, methotrexate, ifosfoamide, asparaginase, etoposide)

^{*}PET-positive patients will undergo biopsy to evaluate for persistent disease


^{**}Or biopsy showing no evidence of lymphoma

^{***}Patients with an "indeterminant response" by the LYRIC criteria (evidence of disease progression on PET but with clinical improvement) can be considered for another 2 cycles of pembrolizumab after discussion with the MSK PI.¹ See section 9.1 for details.

T cell Lymphoma Time for targeted therapy?

- Significant strides in understanding biological heterogeneity and targets identified
- PTCL remains heterogeneous
- PTCL-NOS a shrinking entity
- For TFH subtype: epigenetic targeting
- ALCL: BV based regimen
- ENKL: Pembro containing regimen
- Rest?

Hopefully, in the future...

